Recently, using unmanned Aerial Vehicle(UAV) to capture images has become a popular application. However, the large scale variation and dense object distribution characteristic of UAV images brings challenges to object detection. Hence, we propose an efficient end-to-end detector named SPB-YOLO for UAV images. In this paper, firstly we design a Strip Bottleneck (SPB) module to better understand the width-height dependency by using an attention mechanism for improving the detection sensitivity of different scales’ objects in the UAV image. Secondly, we propose an upsample strategy based on Path Aggregation Network(PANet) for the feature map and add another one detection head compared to YOLOv5, which specially deal with the detection task of dense objects distribution. Finally, we execute some experiments on two public datasets, and the results show that the proposed SPBYOLO outperforms other latest UAV image detectors and makes a good trade-off between detection accuracy and speed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SPB-YOLO: An Efficient Real-Time Detector For Unmanned Aerial Vehicle Images


    Beteiligte:
    Wang, Xinran (Autor:in) / Li, Weihong (Autor:in) / Guo, Wei (Autor:in) / Cao, Kun (Autor:in)


    Erscheinungsdatum :

    13.04.2021


    Format / Umfang :

    1609939 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ST-YOLO: An Enhanced Detector of Small Objects in Unmanned Aerial Vehicle Imagery

    Haimin Yan / Xiangbo Kong / Juncheng Wang et al. | DOAJ | 2025

    Freier Zugriff


    Unmanned aerial vehicle detector

    BENJAMIN JAMES COOK | Europäisches Patentamt | 2022

    Freier Zugriff

    REAL-TIME UNMANNED AERIAL VEHICLE CONNECTIVITY

    ABHIGYAN ABHIGYAN SHARMA / YIN MINGSHENG / TRAN XUAN TUYEN | Europäisches Patentamt | 2023

    Freier Zugriff