The usage of niche copper-rotor induction motor (CRIM) in the Tesla Roadster electric vehicle has bolstered the technology of using copper-rotor induction motor for electrified transportation. Understanding the merits, demerits and state of art technology of induction motor and its drive in EV/HEV application, this research manuscript proposes an online stator and rotor resistance estimation scheme using particle swarm optimization (PSO) technique for efficient and accurate control of induction motors in the same application. Firstly, an insight is provided on the state or art CRIM technology in EV/HEV and the need for reliable online rotor and stator resistance estimation scheme. Secondly, a PSO based scheme for resistance estimation is developed through a mathematical model. The developed model is validated and tested on a 10hp CRIM thorough a computer programme. Thereafter, the calculated results obtained from numerical investigations are analyzed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online stator and rotor resistance estimation scheme using swarm intelligence for induction motor drive in EV/HEV


    Beteiligte:
    Iyer, K. L. V. (Autor:in) / Xiaomin Lu, (Autor:in) / Mukherjee, K. (Autor:in) / Kar, N. C. (Autor:in)


    Erscheinungsdatum :

    01.09.2011


    Format / Umfang :

    1767149 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Very-Low-Speed Sensorless Control Induction Motor Drive with Online Rotor Resistance Tuning by Using MRAS Scheme

    Zorgani, Youssef Agrebi / Jouili, Mabrouk / Koubaa, Yassine et al. | Online Contents | 2018


    Induction motor servo drive with adaptive rotor time-constant estimation

    Faa-Jeng Lin / Ho-Ming Su / Hong-Pong Chen | IEEE | 1998



    Artificial Intelligence Based Stator Winding Fault Estimation in Three Phase Induction Motor

    Subha, M. / Kumar, N. Senthil / Veni, K. S. Krishna | IEEE | 2018