For many radar applications, a grouping of radar reflections that belong to the same object is needed. Unsupervised clustering algorithms are commonly used for this task. However, the number and density of measured reflections of an object depends on various parameters and therefore unsupervised algorithms often fail to identify all points that should be part of the same cluster. We propose a method to incorporate learned knowledge about the data into the clustering algorithm and show that this new method outperforms unsupervised approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Supervised Clustering for Radar Applications: On the Way to Radar Instance Segmentation


    Beteiligte:
    Schumann, Ole (Autor:in) / Hahn, Markus (Autor:in) / Dickmann, Jurgen (Autor:in) / Wohler, Christian (Autor:in)


    Erscheinungsdatum :

    01.04.2018


    Format / Umfang :

    2993044 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Instance Segmentation With Automotive Radar Detection Points

    Liu, Jianan / Xiong, Weiyi / Bai, Liping et al. | IEEE | 2023



    RSS-Net: Weakly-Supervised Multi-Class Semantic Segmentation with FMCW Radar

    Kaul, Prannay / de Martini, Daniele / Gadd, Matthew et al. | IEEE | 2020


    Multi-View Radar Autoencoder for Self-Supervised Automotive Radar Representation Learning

    Zhu, Haoran / He, Haoze / Choromanska, Anna et al. | IEEE | 2024