Estimating the number of pedestrians in surveillance images and videos has important applications in intelligent transportation systems. This problem is particularly challenging when the scenes are densely crowded, in which the techniques of tracking a single pedestrian has limited effectiveness. Alternative approaches employ statistical learning algorithms to infer pedestrian counts directly from visual features computed on images or scenes. In this paper, we describe a system for predicting pedestrian counts that significantly extends the utility of those ideas. Our approach incorporates a richer set of features for statistical modeling. While these features give rise to regression problems in a high-dimensional space, we leverage learning techniques to reduce dimensionality while still attaining high accuracy for predicting the number of pedestrians. Empirical results have validated our strategy. Specifically, our system outperforms state-of-the-art methods on standard benchmark tasks by a large margin.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting Pedestrian Counts in Crowded Scenes With Rich and High-Dimensional Features


    Beteiligte:
    Junping Zhang, (Autor:in) / Ben Tan, (Autor:in) / Fei Sha, (Autor:in) / Li He, (Autor:in)


    Erscheinungsdatum :

    01.12.2011


    Format / Umfang :

    724848 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Pedestrian detection in crowded scenes

    Leibe, B. / Seemann, E. / Schiele, B. | IEEE | 2005


    Pedestrian Detection and Counting in Crowded Scenes

    Li, Juan / He, Qinglian / Yang, Liya et al. | British Library Conference Proceedings | 2018


    Pedestrian Detection and Counting in Crowded Scenes

    Li, Juan / He, Qinglian / Yang, Liya et al. | Springer Verlag | 2017


    Occlusion-Robust Pedestrian Tracking in Crowded Scenes

    Gastel, Jeroen S. van / Zwemer, Matthijs H. / Wijnhoven, Rob G. J. et al. | IEEE | 2015