Semantic segmentation is an interesting task for many deep learning researchers for scene understanding. However, recognizing details about objects' attributes can be more informative and also helpful for a better scene understanding in intelligent vehicle use cases. This paper introduces a method for simultaneous semantic segmentation and pedestrian attributes recognition. A modified dataset built on top of the Cityscapes dataset is created by adding attribute classes corresponding to pedestrian orientation attributes. The proposed method extends the SegNet model and is trained by using both the original and the attribute-enriched datasets. Based on an experiment, the proposed attribute-aware semantic segmentation approach shows the ability to slightly improve the performance on the Cityscapes dataset, which is capable of expanding its classes in this case through additional data training.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Attribute-aware Semantic Segmentation of Road Scenes for Understanding Pedestrian Orientations


    Beteiligte:
    Sulistiyo, M. D. (Autor:in) / Kawanishi, Y. (Autor:in) / Deguchi, D. (Autor:in) / Hirayama, T. (Autor:in) / Ide, I. (Autor:in) / Zheng, J. Y. (Autor:in) / Mutase, H. (Autor:in)


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    955926 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Understanding Pedestrian Behavior in Complex Traffic Scenes

    Rasouli, Amir / Kotseruba, Iuliia / Tsotsos, John K. | IEEE | 2018


    Parallel Complement Network for Real-Time Semantic Segmentation of Road Scenes

    Lv, Qingxuan / Sun, Xin / Chen, Changrui et al. | IEEE | 2022




    Multiband Image Segmentation and Object Recognition for Understanding Road Scenes

    Kang, Y. / Yamaguchi, K. / Naito, T. et al. | IEEE | 2011