LiDAR based perception module plays an important role in autonomous driving. However, the present CNN models are designed for image processing but not LiDAR point clouds. The performances of such models are limited by the great memory consumption and heavy computation cost. In this work, a lightweight CNN model, Liseg, is proposed to perform real-time road-object semantic segmentation on LiDAR point cloud scans for autonomous driving. The model size of Liseg is several times smaller than others, while achieving high accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    LiSeg: Lightweight Road-object Semantic Segmentation In 3D LiDAR Scans For Autonomous Driving


    Beteiligte:
    Zhang, Wenquan (Autor:in) / Zhou, Chancheng (Autor:in) / Yang, Junjie (Autor:in) / Huang, Kai (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    3412334 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LISEG: LIGHTWEIGHT ROAD-OBJECT SEMANTIC SEGMENTATION IN 3D LIDAR SCANS FOR AUTONOMOUS DRIVING

    Zhang, Wenquan / Zhou, Chancheng / Yang, Junjie et al. | British Library Conference Proceedings | 2018


    RGB and LiDAR fusion based 3D Semantic Segmentation for Autonomous Driving

    El Madawi, Khaled / Rashed, Hazem / El Sallab, Ahmad et al. | IEEE | 2019


    Lidar Mapping Optimization Based on Lightweight Semantic Segmentation

    Zhao, Zhihao / Zhang, Wenquan / Gu, Jianfeng et al. | IEEE | 2019


    Semantic Segmentation of Road Profiles for Efficient Sensing in Autonomous Driving

    Cheng, Guo / Zheng, Jiang Yu / Kilicarslan, Mehmet | IEEE | 2019


    SEMANTIC SEGMENTATION OF ROAD PROFILES FOR EFFICIENT SENSING IN AUTONOMOUS DRIVING

    Cheng, Guo / Zheng, Jiang Yu / Kilicarslan, Mehmet | British Library Conference Proceedings | 2019