This paper considers an unmanned aerial vehicle (UAV)-assisted Hierarchical Federated Learning (HFL), where UAVs act as intermediate aggregators. We formulate an optimization problem that aims to find the best UAV placements, user-UAV associations, channel assignments, and user selection to minimize the time needed for HFL to achieve a target learning accuracy. We propose a two-phase approach to solve the problem. The first one deals with the UAV placement using the K-means algorithm. For the second phase, we propose a user association and selection algorithm that prioritizes selecting users who can make a time-efficient and significant contribution to the FL training process. Simulation results show the proposed algorithm’s efficiency and ability to reach the target learning accuracy faster than the considered benchmarks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On the Optimization of UAV-Assisted Wireless Networks for Hierarchical Federated Learning


    Beteiligte:
    Khelf, Roumaissa (Autor:in) / Driouch, Elmahdi (Autor:in) / Ajib, Wessam (Autor:in)


    Erscheinungsdatum :

    05.09.2023


    Format / Umfang :

    1172573 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hierarchical Federated Learning with Edge Optimization in Constrained Networks

    Zhang, Xiaoyang / Tham, Chen-Khong / Wang, Wenyi | IEEE | 2024


    Adaptive Transceiver Design for Wireless Hierarchical Federated Learning

    Zhou, Fangtong / Chen, Xu / Shan, Hangguan et al. | IEEE | 2023


    Asynchronous Federated Learning for Edge-assisted Vehicular Networks

    Wang, Siyuan / Wu, Qiong / Fan, Qiang et al. | ArXiv | 2022

    Freier Zugriff

    Cluster Based Pseudo Hierarchical Decentralized Federated Learning in UAV Networks

    Rayudu Tummala, Veera Manikantha / Hazra, Abhishek / Kalita, Alakesh et al. | IEEE | 2024