Gossip Learning (GL) is a fully decentralized machine learning paradigm with the potential to enable highly scalability and to preserve user privacy. The majority of existing results however consider scenarios in which either each node communicates with all other nodes, or in which the connectivity graph is static, and they are therefore inapplicable in dynamic setups such as in VANETs. This work is a first attempt at designing and assessing GL schemes suited for scenarios with moving nodes with the application of predicting the trajectory of moving cars.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Poster: Mobile Gossip Learning for Trajectory Prediction


    Beteiligte:


    Erscheinungsdatum :

    16.12.2020


    Format / Umfang :

    138733 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Mobile User Trajectory Prediction Based on Machine Learning

    Liu, Ya / Yang, Hongwen / Huang, Rui | IEEE | 2022