Traffic sign detection is a valuable part of future driver support system. In this paper, we present a novel framework to accurately detect traffic signs from a single color image by analyzing geometrical, physical and text/symbol features of traffic signs. First, we utilize an elaborate edge detection algorithm to extract edge map and accurate edge pixel gradient information. Second 2-D geometric primitives (circles, ellipses, rectangles and triangles) are quickly extracted from image edge map. Third the candidate traffic sign regions are selected by analyzing the intrinsic color features, which are invariant to different illumination conditions, of each region circumvented by geometric primitives. Finally a text and symbol detection algorithm is introduced to classify true traffic signs. Experimental results demonstrated the capabilities of our algorithm to detect traffic signs with respect to different size, shape, color and illumination conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Geometrical, Physical and Text/Symbol Analysis Based Approach of Traffic Sign Detection System


    Beteiligte:
    Yangxing Liu, (Autor:in) / Ikenaga, T. (Autor:in) / Goto, S. (Autor:in)


    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    1286078 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Geometrical, Physical and Text/Symbol Analysis Based Approach of Traffic Sign Detection System

    Liu, Y. / Ikenaga, T. / Goto, S. | British Library Conference Proceedings | 2006


    Traffic sign symbol comprehension: A cross-cultural study

    Shinar, David / Dewar, Robert E. / Summala, Heikki et al. | Tema Archiv | 2003


    Cascaded Segmentation-Detection Networks for Text-Based Traffic Sign Detection

    Zhu, Yingying / Liao, Minghui / Yang, Mingkun et al. | IEEE | 2018


    Traffic Symbol Detection and Recognition System

    Zakir Hussain, K. Md. / Kattigenahally, Komal Nagaraj / Nikitha, S. et al. | Springer Verlag | 2021


    An Invariant Traffic Sign Recognition System Based on Sequential Color Processing and Geometrical Transformation

    Kang, D. S. / Griswold, N. C. / Kehtarnavaz, N. et al. | British Library Conference Proceedings | 1994