In this article, we introduce a potential game-based approach to implement collaborative user scheduling and power allocation in the uplink multibeam satellite-based Internet of things (S-IoT) networks. First of all, a framework of the multibeam uplink S-IoT system is proposed, where full frequency reuse and co-channel interference among different spot beams are considered. To provide broadband S-IoT service effectively, we formulate an initial optimization problem of maximizing uplink sum transmission capacity and then transform it into an interference avoidance problem to address the mathematical intractability. Specifically, a game-theoretic model is implemented to solve the transformed optimization problem, which is proved to be a potential game and existence of Nash equilibriums (NEs). Moreover, an iterative algorithm with low computational complexity, motivated by the finite improvement property, is designed to implement collaborative user scheduling and power allocation to NE point. Finally, the simulation results prove the convergence and effectiveness of the proposed potential game-based approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Potential Game-Based Radio Resource Allocation in Uplink Multibeam Satellite IoT Networks


    Beteiligte:
    Zhang, Xiaokai (Autor:in) / Zhang, Bangning (Autor:in) / Guo, Daoxing (Autor:in) / An, Kang (Autor:in) / Qi, Shuai (Autor:in) / Wu, Gang (Autor:in)


    Erscheinungsdatum :

    01.12.2021


    Format / Umfang :

    1181137 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Radio Planning in Multibeam Geostationary Satellite Networks

    Touati, Corinne / Altman, Eitan / Galtier, Jerome et al. | AIAA | 2003


    AIAA-2003-2244 Radio Resource Allocation in Multibeam GSO Satellite Communication Systems for Mobile Packet Services

    Lim, K. / Kim, S. / Oh, D. et al. | British Library Conference Proceedings | 2003


    Machine Learning for Radio Resource Management in Multibeam GEO Satellite Systems

    Ortiz-Gomez, Flor G. / Lei, Lei / Lagunas, Eva et al. | BASE | 2022

    Freier Zugriff

    AIAA-2003-2271 Radio Planning in Multibeam Geostationary Satellite Networks

    Touati, C. / Altman, E. / Galtier, J. et al. | British Library Conference Proceedings | 2003