This study investigates the synergistic application of Artificial Intelligence (AI), Machine Learning (ML), and Geospatial Technologies in optimizing traffic management systems. Through a mixed-methods research design, it evaluates the potential of these technologies to enhance urban traffic flow and reduce congestion. The research emphasizes the critical importance of data quality, ethical considerations, and the selection of appropriate technological solutions based on specific urban traffic scenarios. Findings highlight the significant role of integrated AI and geospatial analyses in improving traffic predictions and operational efficiency. Future work will focus on developing more sophisticated models that ensure privacy, equity, and adaptability to new transportation trends.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Revolutionizing Road Traffic Management and Enforcement: Harnessing AI, ML, and Geospatial Techniques




    Erscheinungsdatum :

    22.03.2024


    Format / Umfang :

    1281022 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    REVOLUTIONIZING SPACE TRAFFIC MANAGEMENT

    Wilhelm, Claire | TIBKAT | 2021




    Smart Traffic Systems: Revolutionizing Road Transport with AI and Image Processing

    Bindu Madavi, K. P. / Krishna Sowjanya, K. / Sardar, Tanvir H. et al. | Springer Verlag | 2025


    Performance improvement in road traffic law enforcement

    Matchett, M. R. / Van der Walt, J. P. / Van Tonder, H. P. et al. | British Library Conference Proceedings | 1993