Automated driving within a lane is a fascinating experience already. However, more exiting but also technically more challenging is to dare the next step of automating tactical behavior decisions for lane changes, as well. In this paper, we present our approach for situation assessment in tactical behavior planning for lane changes, whether lane changes are beneficial and/or possible. We present a way to tackle perception uncertainties and how to monitor the system's abilities and current skills. This is achieved by a dynamic Bayesian network and an unscented variance transform. Our approach is evaluated not only in a simulation, but also in real traffic. Our implementation has recently been demonstrated to the public in the Audi A7 piloted driving concept vehicle, driving 550 miles from Stanford to Las Vegas to the Consumer Electronics Show (CES) 2015.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Situation Assessment in Tactical Lane Change Behavior Planning for Automated Vehicles


    Beteiligte:
    Ulbrich, Simon (Autor:in) / Maurer, Markus (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    773877 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Towards tactical lane change behavior planning for automated vehicles

    Ulbrich, Simon Martin / Technische Universität Braunschweig | TIBKAT | 2018



    Towards tactical lane change behavior planning for automated vehicles

    Ulbrich, Simon Martin / Technische Universität Braunschweig | TIBKAT | 2018

    Freier Zugriff


    Modeling tactical lane-change behavior for automated vehicles: A supervised machine learning approach

    Motamedidehkordi, Nassim / Amini, Sasan / Hoffmann, Silja et al. | IEEE | 2017