Autonomous vehicles (AVs) enhance driving efficiency and reduce accidents but require robust risk assessment methods due to dense traffic and uncertainties. Existing methods rely on predefined rules, which lack generalization. This paper presents a novel risk quantification method without expert rules, leveraging reinforcement learning and adversarial agents. The proposed model uses Gated Transformer Networks for multivariate time series regression, analyzing historical traffic data to generate continuous risk assessments. Simulation experiments validate the method's efficacy, demonstrating its precision and robustness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Data-Driven Risk Assessment Method for Autonomous Vehicles Without Expert Rule Design


    Beteiligte:
    Wang, Caojun (Autor:in) / Yang, Shuo (Autor:in) / Huang, Yanjun (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    1245304 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Expert-driven Rule-based Refinement of Semantic Segmentation Maps for Autonomous Vehicles

    Manibardo, Eric L. / Lana, Ibai / Del Ser, Javier et al. | IEEE | 2023


    Risk assessment system for autonomous vehicles and method thereof

    SHIN IN SUP / HWANG EUN JI | Europäisches Patentamt | 2024

    Freier Zugriff

    Expert systems, a tool for autonomous underwater vehicles

    Blidberg, D.R. / Westneat, A.S. / Corell, R.W. | Tema Archiv | 1983


    False discrimination of rule violations for autonomous vehicles for data processing

    KLEEN ANDREAS / DUINJER TEBBENS RICHARD / BIN-NUNN AVI et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    DISCERNING FAULT FOR RULE VIOLATIONS OF AUTONOMOUS VEHICLES FOR DATA PROCESSING

    COLLIN ANNE / TEBBENS RADBOUD DUINTJER / BIN-NUN AMITAI et al. | Europäisches Patentamt | 2023

    Freier Zugriff