We introduce a self-attending task generative adversarial network (SATGAN) and apply it to the problem of augmenting synthetic high contrast scientific imagery of resident space objects with realistic noise patterns and sensor characteristics learned from collected data. Augmenting these synthetic data is challenging due to the highly localized nature of semantic content in the data that must be preserved. Real collected images are used to train a network what a given class of sensor's images should look like. The trained network then acts as a filter on noiseless context images and outputs realistic-looking fakes with semantic content unaltered. The architecture is inspired by conditional GANs but is modified to include a task network that preserves semantic information through augmentation. Additionally, the architecture is shown to reduce instances of hallucinatory objects or obfuscation of semantic content in context images representing space observation scenes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Self-Attending Task Generative Adversarial Network for Realistic Satellite Image Creation


    Beteiligte:
    Toner, Nathan (Autor:in) / Fletcher, Justin (Autor:in)


    Erscheinungsdatum :

    05.03.2022


    Format / Umfang :

    6916752 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    REALISTIC ULTRASONIC ENVIRONMENT SIMULATION USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

    Pöpperli, Maximilian / Gulagundi, Raghavendra / Yogamani, Senthil et al. | British Library Conference Proceedings | 2019


    Realistic Ultrasonic Environment Simulation Using Conditional Generative Adversarial Networks

    Popperli, Maximilian / Gulagundi, Raghavendra / Yogamani, Senthil et al. | IEEE | 2019


    Image-to-Image Translation Using Generative Adversarial Network

    Lata, Kusam / Dave, Mayank / Nishanth, K N | IEEE | 2019


    A Generative Adversarial Imitation Learning Approach for Realistic Aircraft Taxi-Speed Modeling

    Pham, Duc-Thinh / Tran, Thanh-Nam / Alam, Sameer et al. | IEEE | 2022


    GENERATIVE ADVERSARIAL NETWORK ENRICHED DRIVING SIMULATION

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff