For a wireless avionics communication system, a Multi-arm bandit game is mathematically formulated, which includes channel states, strategies, and rewards. The simple case includes only two agents sharing the spectrum which is fully studied in terms of maximizing the cumulative reward over a finite time horizon. An Upper Confidence Bound (UCB) algorithm is used to achieve the optimal solutions for the stochastic Multi-Arm Bandit (MAB) problem. Also, the MAB problem can also be solved from the Markov game framework perspective. Meanwhile, Thompson Sampling (TS) is also used as benchmark to evaluate the proposed approach performance. Numerical results are also provided regarding minimizing the expectation of the regret and choosing the best parameter for the upper confidence bound.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic multi-arm bandit game based multi-agents spectrum sharing strategy design


    Beteiligte:
    Lu, Jingyang (Autor:in) / Li, Lun (Autor:in) / Shen, Dan (Autor:in) / Chen, Genshe (Autor:in) / Jia, Bin (Autor:in) / Blasch, Erik (Autor:in) / Pham, Khanh (Autor:in)


    Erscheinungsdatum :

    01.09.2017


    Format / Umfang :

    1124305 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-agent task assignment in the bandit framework

    Le Ny, J. / Dahleh, M. / Feron, E. | Tema Archiv | 2006



    A multi-armed bandit framework for efficient UAV-based cooperative jamming coverage

    Cabezas, X. A. (X. A. F.) / Osorio, D. P. (D. P. M.) / Juntti, M. (M.) | BASE | 2023

    Freier Zugriff