This paper introduces a proposal for a collaborative intelligent localization algorithm inspired from the Particle Swarm Optimization (PSO) technique and applied to highly dynamic road vehicle localization. This approach performs a reactive cooperative vehicle localization by considering a PSO of the vehicle position in a dynamic environment with an adaptive dynamic ‘fitness’ function. In order to manage the uncertainties, the PSO algorithm is coupled with an Extended Kalman Filter (EKF). This new localization approach is tested and validated using real world data obtained from embedded sensors (GPS, INS, Odometer, Gyrometer, Steering wheel angle sensor and a Centimetrik RTK GPS) in comparison with the classical EKF performances. The first results obtained are better in terms of accuracy and robustness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A new robust cooperative-reactive Filter for vehicle localization: The Extended Kalman Particle Swarm ‘EKPS’


    Beteiligte:
    Bacha, A. R. Ahmed (Autor:in) / Gruyer, D. (Autor:in) / Mammar, S. (Autor:in)


    Erscheinungsdatum :

    01.06.2013


    Format / Umfang :

    446521 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A NEW ROBUST COOPERATIVE-REACTIVE FILTER FOR VEHICLE LOCALIZATION: THE EXTENDED KALMAN PARTICLE SWARM `EKPS'

    Bacha, A. / Gruyer, D. / Mammar, S. et al. | British Library Conference Proceedings | 2013



    A New Adaptive Extended Kalman Filter for Cooperative Localization

    Yulong Huang / Yonggang Zhang / Bo Xu et al. | IEEE | 2018



    Stable Robust Extended Kalman Filter

    Mu, He-Qing | Online Contents | 2016