Autonomous rendezvous and approaching of spacecrafts and uncooperative space objects is the fundamental portion of future on-orbit satellite maintenance or asteroid exploration mission, while estimating the relative attitude and position of known uncooperative space objects on-board is still one of challenges in these tasks. Recently, the development of flash light detection and ranging sensors (LIDARs) and 3D imaging technology provides a feasible and reliable method for relative navigation. This paper proposes an end-to-end neural network based on Transformer to estimate 6-DoF attitude of the uncooperative space object with point cloud. The experiments are conducted to validate the performance and robustness of our network.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    6-DoF Pose Estimation of Uncooperative Space Object Using Deep Learning with Point Cloud


    Beteiligte:
    Zhang, Shaodong (Autor:in) / Hu, Weiduo (Autor:in) / Guo, Wulong (Autor:in)


    Erscheinungsdatum :

    05.03.2022


    Format / Umfang :

    7303475 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Monocular Relative Pose Estimation Pipeline for Uncooperative Resident Space Objects

    Piazza, Massimo / Maestrini, Michele / Di Lizia, Pierluigi | AIAA | 2022


    Uncooperative pose estimation with a LIDAR-based system

    Opromolla, Roberto | Online Contents | 2014


    Pose Estimation of Uncooperative Unknown Space Objects from a Single Image

    Xiaoyuan Ren / Libing Jiang / Zhuang Wang | DOAJ | 2020

    Freier Zugriff