In this paper, we implement a random subspace based algorithm to classify the plankton images detected in real time by the shadowed image particle profiling and evaluation recorder. The difficulty of such classification is compounded because the data sets are not only much noisier but the plankton are deformable, projection-variant, and often in partial occlusion. In addition, the images in our experiments are binary thus are lack of texture information. Using random sampling, we construct a set of stable classifiers to take full advantage of nearly all the discriminative information in the feature space of plankton images. The combination of multiple stable classifiers is better than a single classifier. We achieve over 93% classification accuracy on a collection of more than 3000 images, making it comparable with what a trained biologist can achieve by using conventional manual techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Binary plankton image classification using random subspace


    Beteiligte:
    Feng Zhao, (Autor:in) / Xiaoou Tang, (Autor:in) / Feng Lin, (Autor:in) / Samson, S. (Autor:in) / Remsen, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    137426 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Binary Plankton Image Classification using Random Subspace

    Zhao, F. / Tang, X. / Lin, F. et al. | British Library Conference Proceedings | 2005


    Subspace analysis using random mixture models

    Xiaogang Wang, / Xiaoou Tang, | IEEE | 2005


    Plankton

    Yonge, C. M. | NTRS | 1966


    Multiple Similarities Based Kernel Subspace Learning for Image Classification

    Yan, W. / Liu, Q. / Lu, H. et al. | British Library Conference Proceedings | 2006


    Random Sampling for Subspace Face Recognition

    Wang, X. / Tang, X. | British Library Online Contents | 2006