Digital images obtained using CCD or CMOS sensors are subject to corruption by AWGN noise during sensor readout. Most of the techniques used for noise reduction in images have relied on methods that operate on global image attributes and noise assumptions. Recently, several approaches have been proposed that attempt to recover an uncorrupted image by examining attributes within a statistical neighborhood of an image. This paper will extend this body of work by describing a novel statistical neighborhood algorithm for denoising images. This algorithm exploits the naturally occurring redundancy in an image and employs an algorithm to selectively normalize and average redundant information in the corrupted image.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Non-local Maximum-Likelihood Denoising Algorithm


    Beteiligte:


    Erscheinungsdatum :

    01.03.2007


    Format / Umfang :

    7309189 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Maximum Likelihood Stereo Algorithm

    Cox, I. J. / Hingorani, S. L. / Rao, S. B. et al. | British Library Online Contents | 1996


    Maximum-Likelihood Parameter-Estimation Algorithm

    Eldred, D. B. / Hamidi, M. / Rodriguez, G. | NTRS | 1986


    Improved spatially adaptive MDL denoising of images using normalized maximum likelihood density

    Meena, S. / Annadurai, S. | British Library Online Contents | 2008


    The TRIAD algorithm as maximum likelihood estimation

    Shuster, Malcolm D. | Online Contents | 2006