This paper presents a sensorial-cooperative architecture to detect, track and classify entities in semi-structured outdoor scenarios for intelligent vehicles. In order to accomplish this task, information provided by in-vehicle Lidar and monocular vision is used. The detection and tracking phases are performed in the laser space, and the object classification methods work both in laser space (using a Gaussian Mixture Model classifier) and in vision spaces (AdaBoost classifier). A Bayesian-sum decision rule is used in order to combine the results of both classification techniques, and hence a more reliable object classification is achieved. Experiments confirm the effectiveness of the proposed architecture.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Lidar and Vision-based Approach for Pedestrian and Vehicle Detection and Tracking


    Beteiligte:


    Erscheinungsdatum :

    01.09.2007


    Format / Umfang :

    860696 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LIDAR and vision-based pedestrian detection system

    Premebida, C. / Ludwig, O. / Nunes, U. | British Library Online Contents | 2009



    Pedestrian Detection and Tracking Using In-Vehicle Lidar for Automotive Application

    Ogawa, T. / Sakai, H. / Suzuki, Y. et al. | British Library Conference Proceedings | 2011


    Pedestrian Detection Based on Integration of Vision and High-definition LIDAR

    Kidono, K. / Goto, K. / Naito, T. et al. | British Library Conference Proceedings | 2011


    Pedestrian detection and tracking with night vision

    Fengliang Xu, / Xia Liu, / Fujimura, K. | IEEE | 2005