This paper presents a threat-assessment algorithm for general road scenes. A road scene consists of a number of objects that are known, and the threat level of the scene is based on their current positions and velocities. The future driver inputs of the surrounding objects are unknown and are modeled as random variables. In order to capture realistic driver behavior, a dynamic driver model is implemented as a probabilistic prior, which computes the likelihood of a potential maneuver. A distribution of possible future scenarios can then be approximated using a Monte Carlo sampling. Based on this distribution, different threat measures can be computed, e.g., probability of collision or time to collision. Since the algorithm is based on the Monte Carlo sampling, it is computationally demanding, and several techniques are presented to increase performance without increasing computational load. The algorithm is intended both for online safety applications in a vehicle and for offline data analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Statistical Threat Assessment for General Road Scenes Using Monte Carlo Sampling


    Beteiligte:
    Eidehall, A. (Autor:in) / Petersson, L. (Autor:in)


    Erscheinungsdatum :

    01.03.2008


    Format / Umfang :

    707255 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Detecting parametric objects in large scenes by Monte Carlo sampling

    Verdié, Y. / Lafarge, F. | British Library Online Contents | 2014


    Monte Carlo based Threat Assessment: Analysis and Improvements

    Danielsson, Simon / Petersson, Lars / Eidehall, Andreas | IEEE | 2007


    Monte Carlo Based Threat Assessment: Analysis and Improvements

    Danielsson, S. / Petersson, L. / Eidehall, A. et al. | British Library Conference Proceedings | 2007