This paper presents a novel approach for harmonic estimation in modern power systems by integrating Recursive Least Squares (RLS) and Ant Lion optimization Algorithm (ALA). Harmonic distortion in power systems poses significant challenges to system stability and efficiency, necessitating accurate estimation techniques. The Recursive Least Squares method offers adaptability and real-time tracking capabilities, making it suitable for handling the dynamic nature of power systems. Additionally, the Ant Lion Algorithm, inspired by the foraging behavior of ant lions, optimizes parameters for enhanced estimation accuracy. The proposed methodology combines the strengths of RLS and ALA to provide robust harmonic estimation. Simulation results of proposed ALA-RLS on a representative power system harmonic model validate the effectiveness and superiority of the proposed approach in terms of accuracy and computational efficiency. This integrated technique holds promise for practical implementation in modern power systems to improve harmonic estimation and mitigate associated challenges.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Novel Hybrid Harmonic Estimation Technique in Modern Power System combining Recursive Least Square and Ant Lion Optimization


    Beteiligte:
    Mallick, Ranjan Kumar (Autor:in) / Rai, Arvind (Autor:in) / Bhoi, Ashok (Autor:in) / Nayak, Pravati (Autor:in) / Panda, Gayadhar (Autor:in) / Debnath, Manoj Kumar (Autor:in)


    Erscheinungsdatum :

    31.07.2024


    Format / Umfang :

    361781 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Cloud Based Framework for OBD-II System Diagnosis Using Recursive Least Square Parametric Estimation

    Singh, Shwetanshu / Mandloi, Deepak / Das, Himadri | British Library Conference Proceedings | 2022


    Recursive Least Square Adaptive Fuzzy Control for Nonlinear Systems

    Hongli, S. / Yuanli, C. / Zulian, Q. | British Library Online Contents | 2006