Unmanned aerial vehicles (UAVs) have emerged as a revolutionary technology with diverse applications in fields such as crop monitoring, logistics, and traffic surveillance. Despite all these advantages, they also pose certain challenges such as privacy breaches, potential collision risks with airplanes, and terrorism activities. To mitigate these concerns, various techniques have been developed for UAV detection. In this paper, we propose a computationally efficient deep learning network RF-NeuralNet for UAV detection and mode identification using RF fingerprints. The proposed network involves a multiple-level skip connection to mitigate the gradient vanishing problem and multiple-level pooling layers for deep-level feature extraction. We evaluate the performance of the proposed RF-NeuralNet based on multiple UAV monitoring tasks (i.e., UAV identification, classification, and operational mode). Our proposed framework outperformed other state-of-the-art models and achieved an overall accuracy of 89%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    RF-NeuralNet: Lightweight Deep Learning Framework for Detecting Rogue Drones from Radio Frequency Signatures


    Beteiligte:
    Misbah, Maham (Autor:in) / Dil, Mahnoor (Autor:in) / Khalid, Waqas (Autor:in) / Kaleem, Zeeshan (Autor:in)


    Erscheinungsdatum :

    04.08.2023


    Format / Umfang :

    4829563 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Protecting Against Rogue Drones

    B. Elias | NTIS | 2020


    Multi-Agent Coordinated Interception of Multiple Rogue Drones

    Valianti, Panayiota / Papaioannou, Savvas / Kolios, Panayiotis et al. | IEEE | 2020


    SYSTEM AND METHOD FOR DETECTING, INTERCEPTING AND TAKING OVER CONTROL OF MULTIPLE ROGUE DRONES SIMULTANEOUSLY

    CHAN KOK LIANG FRANKIE / MOO TENG FOO / OSILLADA GONZALES EDGARDO II et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    Drones Chasing Drones: Reinforcement Learning and Deep Search Area Proposal

    Moulay A. Akhloufi / Sebastien Arola / Alexandre Bonnet | DOAJ | 2019

    Freier Zugriff

    Real-Time Fire Detection: Integrating Lightweight Deep Learning Models on Drones with Edge Computing

    Md Fahim Shahoriar Titu / Mahir Afser Pavel / Goh Kah Ong Michael et al. | DOAJ | 2024

    Freier Zugriff