Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex. Current heuristic-based algorithms such as the slot-based method rely heavily on hand-engineered parameters and are restricted to specific scenarios. Supervised learning methods such as Imitation Learning lack generalization and safety guarantees. To address these problems and to ensure a robust framework, we propose a Robust-Hierarchical Reinforcement Learning (HRL) framework for learning autonomous driving policies. We adapt a state-of-the-art algorithm, Hierarchical Double Deep Q-learning (h-DDQN), and make the framework robust by (1) constituting the decision of selecting driving maneuver as a high-level option; (2) for the lower-level controller, outputting waypoint trajectories to track with a Proportional-Integral-Derivative (PID) controller instead of direct acceleration/steering actions; and (3) using a Long-Short-Term-Memory (LSTM) layer in the network to alleviate the effects of observation noise and dynamic driving behaviors. Moreover, to improve the sample efficiency, we use Hybrid Reward Mechanism and Reward-Driven Exploration. Results from the high-fidelity CARLA simulator while simulating different interactive lane change scenarios indicate that the proposed framework reduces convergence time, generates smoother trajectories, and can better handle dynamic surroundings and noisy observations as compared to other traditional RL approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning


    Beteiligte:
    Naveed, Kaleb Ben (Autor:in) / Qiao, Zhiqian (Autor:in) / Dolan, John M. (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    714592 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Trajectory Simulation Approach for Autonomous Vehicles Path Planning using Deep Reinforcement Learning

    de Oliveira Lima, Jean Phelipe / Oliveira, Raimundo Correa de / Costa, Cleinaldo de Almeida | BASE | 2020

    Freier Zugriff

    Autonomous Vehicles Lane-Changing Trajectory Planning Based on Hierarchical Decoupling

    Lin, Xinyou / Wang, Tianfeng / Zeng, Songrong et al. | IEEE | 2024


    Trajectory Tracking and Navigation Model for Autonomous Vehicles Using Reinforcement Learning

    Ramani, G. / Karthik, C. / Pranay, B. et al. | Springer Verlag | 2024