Content-based image retrieval (CBIR) is an attempt to remove the bottleneck of visual semantic understanding needed in automated indexing in visual information retrieval. However, the myth about the power of visual-feature-based indexing was quickly diminished as such features are far from representing semantic visual contents and producing meaningful indexes. One solution is to apply relevance feedback to refine queries or similarity measures in the search process and apply machine learning techniques to learn semantic annotations. In this paper, we address the key issues involved in relevance feedback of CBIR systems and review solutions to these issues. Based on these discussions, we present a relevance feedback and semantic learning framework for CBIR. We hope the ideas presented in this paper serve as a catalyst to more research efforts in this direction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning semantics in content based image retrieval


    Beteiligte:


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    399045 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning Semantics in Content Based Image Retrieval

    Zhang, H.-J. / IEEE | British Library Conference Proceedings | 2003


    Semantics Modeling Based Image Retrieval System using Neural Networks

    Ma, X. / Wang, D. | British Library Conference Proceedings | 2005



    Probabilistic Feature Relevance Learning for Content-Based Image Retrieval

    Peng, J. / Bhanu, B. / Qing, S. | British Library Online Contents | 1999


    Image Retrieval by Content: A Machine Learning Approach

    Fayyad, U. M. / Smyth, P. | NTRS | 1994