In this paper, we address the reference model adaptive neural network control problem for a class of switched nonlinear singular systems under the case of single input and multiple inputs. Based on RBF neural network, the state tracking controller and a switching strategy are designed so that switched nonlinear singular system can asymptotically track the desired reference model. It shows that RBF neural network are used to approximate the positive nonlinear unknown function. The approximation errors of the RBF neural networks are introduced to the adaptive law in order to improve the performance of the whole systems. A simulation example is performed in support of the proposed neural control scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Model reference adaptive neural network control for a class of switched nonlinear singular systems


    Beteiligte:
    Xin Chen, (Autor:in) / Fei Long, (Autor:in) / Zhumu Fu, (Autor:in)


    Erscheinungsdatum :

    01.06.2010


    Format / Umfang :

    759207 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Neural network model-reference adaptive control of power steering systems

    Ouyang, X. / Morgan, C. / Nwagboso, C. | Tema Archiv | 2000


    Neural network model-reference adaptive control of power steering systems

    Ouyang,X. / Morgan,C. / Nwagboso,C. et al. | Kraftfahrwesen | 2000