Multipath interference while tracking sea-skimming targets can significantly distort the estimated height of the target. If accounted for however, this interference can be used to obtain more accurate estimates. In this study, we accomplish this with a convolutional neural network (CNN) used as a parameter estimator. The performance of this network is compared with maximum likelihood and least-squares methods. We found that the CNN performs well in comparison to these methods with only a fraction of the computations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Low-Angle Target Tracking in Sea Surface Multipath Using Convolutional Neural Networks


    Beteiligte:


    Erscheinungsdatum :

    01.10.2023


    Format / Umfang :

    3142394 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive beamforming for low-angle target tracking under multipath interference

    Dongmin Park / Eunjung Yang / Soyeon Ahn et al. | IEEE | 2014



    Multipath Limitations on Low-Angle Radar Tracking

    Mrstik, A.V. / Smith, P.G. | IEEE | 1978


    Attentional convolutional neural networks for object tracking

    Kong, Xiangdong / Zhang, Baochang / Yue, Lei et al. | IEEE | 2018


    Underwater Target Tracking in Uncertain Multipath Ocean Environments

    Liu, Ben / Tang, Xu / Tharmarasa, Ratnasingham et al. | IEEE | 2020