With the rapid development of China's maritime industry, accurate prediction of ship traffic flow is of great significance to improve the operational efficiency of ports. In this paper, we propose a combined model that combines the Seasonal Autoregressive Integrated Moving Average (SARIMA) model and Long Short-Term Memory (LSTM) fusing Multi-head Attention mechanism to improve the prediction accuracy of ship traffic flow. The example data summarizes the actual data from Guangzhou port production business system from 2014-2023. The study integrates the predictive capabilities of linear and nonlinear models while considering the influence of external economic factors on ship traffic flow, possessing better forecasting outcomes. Through comparison experiments with other three models, the combined deep learning model shows superior forecasting performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Combined Deep Learning Method for Prediction of Ship Traffic Flow


    Beteiligte:
    Chen, Mengjiao (Autor:in) / Huang, Lei (Autor:in) / Wang, Ying (Autor:in)


    Erscheinungsdatum :

    23.05.2025


    Format / Umfang :

    2814992 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic flow prediction method based on deep learning

    XIE GANG / WANG HAIYING / XIE RUIQI | Europäisches Patentamt | 2024

    Freier Zugriff

    Regional ship traffic flow prediction method and system

    CHEN XINQIANG / HAN BING / WU ZHONGDAI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Short-Term Traffic Flow Prediction: A Method of Combined Deep Learnings

    Chuanxiang Ren / Chunxu Chai / Changchang Yin et al. | DOAJ | 2021

    Freier Zugriff

    Urban traffic flow prediction method based on deep learning

    WANG RONGXIU / DING YANQIU / ZHENG YAQIAN | Europäisches Patentamt | 2025

    Freier Zugriff

    Lightweight traffic flow prediction method based on deep learning

    ZHENG RUI / DONG CHUNJIAO / GENG QINGQIAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff