The fusion framework based on Light Detection and Ranging (LiDAR) and vision is susceptible to environmental constraints. Therefore, they are unable to adapt to complex and challenging environments. In response to this, this paper proposes a tightly coupled framework based on Global Navigation Satellite System (GNSS) data, which tightly couples GNSS, inertial, LiDAR and visual data. The experimental results demonstrate that, using publicly available challenging environment datasets, the proposed fusion system can achieve a 52.68% improvement in positioning accuracy compared to some existing fusion algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    GVIL: Tightly Coupled GNSS-Visual-Inertial-Lidar for Position Estimation in Challenging Environments


    Beteiligte:
    Shi, Yanfang (Autor:in) / Lian, Baowang (Autor:in) / Zeng, Yonghong (Autor:in) / Kurniawan, Ernest (Autor:in) / Ma, Yugang (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1209671 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Hierarchical Distribution-Based Tightly-Coupled LiDAR Inertial Odometry

    Wang, Chengpeng / Cao, Zhiqiang / Li, Jianjie et al. | IEEE | 2024


    Unified multi-modal landmark tracking for tightly coupled lidar-visual-inertial odometry

    Wisth, D / Camurri, M / Das, S et al. | BASE | 2022

    Freier Zugriff

    InLIOM: Tightly-Coupled Intensity LiDAR Inertial Odometry and Mapping

    Wang, Hanqi / Liang, Huawei / Li, Zhiyuan et al. | IEEE | 2024