An unsupervised texture segmentation method is presented in this paper. In this paper, we propose a simple color quantization scheme to reduce the color space, and then local binary pattern (LBP) and color histogram (CH) are applied to measure the similarity of adjacent texture regions during the segmentation process. In addition, for improving the segmentation accuracy, an efficient boundary checking algorithm is proposed. The execution time of pixelwise modification is also reduced by the proposed approach. The proposed method achieves not only saving processing time but also segmenting the distinct texture regions correctly.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised texture segmentation using color quantization and color feature distributions


    Beteiligte:
    Shiuh-Ku Weng, (Autor:in) / Chung-Ming Kuo, (Autor:in) / Wei-Chung Kang, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    255733 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised Texture Segmentation using Color Quantization and Color Feature Distributions

    Weng, S.-K. / Kuo, C.-M. / Kang, W.-C. | British Library Conference Proceedings | 2005


    Quaternion color texture segmentation

    Shi, L. / Funt, B. | British Library Online Contents | 2007


    Texture Analysis for Enhanced Color Image Quantization

    Shufelt, J. A. | British Library Online Contents | 1997


    Unsupervised multiphase color-texture image segmentation based on variational formulation and multilayer graph

    Yang, Y. / Guo, L. / Wang, T. et al. | British Library Online Contents | 2014


    Color Image Quantization Using Color Variation Measure

    Chang, Yu-Chou / Lee, Dah-Jye | IEEE | 2007