This paper introduces a novel adversarial attack targeting Graph Neural Network (GNN)-based radio resource management in point-to-point networks. Our proposed attack, executed during the test phase, manipulates the system's input by exploiting specific constraints. Formulated as an optimization problem, the attack aims to maximize resource stealing, thereby degrading the quality of communication. We assess the attack's efficacy with respect to the number of users, signal-to-noise ratio, and the adversary's power budget. The results demonstrate that our proposed attack approaches the performance of an established upper-bound adversarial benchmark while maintaining lower complexity, highlighting its effectiveness and potential for real-world applicability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adversarial Attacks Targeting Point-to-Point Wireless Networks


    Beteiligte:


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    606025 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Gradient-Free Adversarial Attacks on 3D Point Clouds from LiDAR Sensors

    Urfei, Jan / Smirnov, Fedor / Weichslgartner, Andreas et al. | Springer Verlag | 2023


    SR-Adv: Salient Region Adversarial Attacks on 3D Point Clouds for Autonomous Driving

    Zheng, Shijun / Liu, Weiquan / Guo, Yu et al. | IEEE | 2024



    Map-Based Localization Under Adversarial Attacks

    Yang, Yulin / Huang, Guoquan | British Library Conference Proceedings | 2017


    Spacecraft Deorbit Point Targeting Using Aerodynamic Drag

    Omar, Sanny R. / Bevilacqua, Riccardo / Guglielmo, David et al. | AIAA | 2017

    Freier Zugriff