Understanding the intentions of drivers at intersections is a critical component for autonomous vehicles. Urban intersections that do not have traffic signals are a common epicenter of highly variable vehicle movement and interactions. We present a method for predicting driver intent at urban intersections through multi-modal trajectory prediction with uncertainty. Our method is based on recurrent neural networks combined with a mixture density network output layer. To consolidate the multi-modal nature of the output probability distribution, we introduce a clustering algorithm that extracts the set of possible paths that exist in the prediction output and ranks them according to probability. To verify the method’s performance and generalizability, we present a real-world dataset that consists of over 23 000 vehicles traversing five different intersections, collected using a vehicle-mounted lidar-based tracking system. An array of metrics is used to demonstrate the performance of the model against several baselines.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Naturalistic Driver Intention and Path Prediction Using Recurrent Neural Networks


    Beteiligte:
    Zyner, Alex (Autor:in) / Worrall, Stewart (Autor:in) / Nebot, Eduardo (Autor:in)


    Erscheinungsdatum :

    01.04.2020


    Format / Umfang :

    2276752 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    END-TO-END PREDICTION OF DRIVER INTENTION USING 3D CONVOLUTIONAL NEURAL NETWORKS

    Gebert, Patrick / Roitberg, Alina / Haurilet, Monica et al. | British Library Conference Proceedings | 2019


    Context-based cyclist path prediction using Recurrent Neural Networks

    Pool, Ewoud A. I. / Kooij, Julian F. P. / Gavrila, Dariu M. | IEEE | 2019


    End-to-end Prediction of Driver Intention using 3D Convolutional Neural Networks

    Gebert, Patrick / Roitberg, Alina / Haurilet, Monica et al. | IEEE | 2019


    CONTEXT-BASED CYCLIST PATH PREDICTION USING RECURRENT NEURAL NETWORKS

    Pool, Ewoud A. I. / Kooij, Julian F. P. / Gavrila, Dariu M. | British Library Conference Proceedings | 2019