Automotive safety validation requires evaluation on a statistically representative set of roadway configurations and scene geometries. Scenes must be sampled from a statistical model representative of what actually occurs on roadways. This paper introduces a methodology for realistic scene model construction based on factor graphs that can be applied to arbitrary road geometries. Parameter learning for factor graphs is known to be convex. Experiments show that the proposed method is superior to the state of the art.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Factor graph scene distributions for automotive safety analysis


    Beteiligte:


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    650757 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Critical Factor Graph Situation Clusters for Accelerated Automotive Safety Validation

    Wheeler, Tim Allan / Kochenderfer, Mykel J. | IEEE | 2019


    CRITICAL FACTOR GRAPH SITUATION CLUSTERS FOR ACCELERATED AUTOMOTIVE SAFETY VALIDATION

    Wheeler, Tim Allan / Kochenderfer, Mykel J. | British Library Conference Proceedings | 2019


    Safety factor in automotive design

    Lundstrom, L.C. | Engineering Index Backfile | 1966


    The Safety Factor in Automotive Design

    Lundstrom, Louis C. | SAE Technical Papers | 1966


    Scene Understanding With Automotive Radar

    Schumann, Ole / Lombacher, Jakob / Hahn, Markus et al. | IEEE | 2020