Dynamic collaborative driving involves the motion coordination of multiple vehicles using shared information from vehicles instrumented to perceive their surroundings in order to improve road usage and safety. A basic requirement of any vehicle participating in dynamic collaborative driving is longitudinal control. Without this capability, higher-level coordination is not possible. This paper focuses on the problem of longitudinal motion control. A detailed nonlinear longitudinal vehicle model which serves as the control system design platform is used to develop a longitudinal adaptive control system based on Monte Carlo Reinforcement Learning. The results of the reinforcement learning phase and the performance of the adaptive control system for a single automobile as well as the performance in a multi-vehicle platoon is presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement learning of adaptive longitudinal vehicle control for dynamic collaborative driving


    Beteiligte:
    Ng, Luke (Autor:in) / Clark, Christopher M. (Autor:in) / Huissoon, Jan P. (Autor:in)


    Erscheinungsdatum :

    01.06.2008


    Format / Umfang :

    437431 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Reinforcement Learning of Adaptive Longitudinal Vehicle Control for Dynamic Collaborative Driving

    Ng, L. / Clark, C. / Huissoon, J.P. | British Library Conference Proceedings | 2008


    ADAPTIVE LONGITUDINAL CONTROL USING REINFORCEMENT LEARNING

    PATHAK SHASHANK / NADKARNI VIJAY JAYANT / BAG SUVAM | Europäisches Patentamt | 2019

    Freier Zugriff

    ADAPTIVE LONGITUDINAL CONTROL USING REINFORCEMENT LEARNING

    PATHAK SHASHANK / NADKARNI VIJAY JAYANT / BAG SUVAM | Europäisches Patentamt | 2019

    Freier Zugriff


    VEHICLE DRIVING LEARNING SYSTEM USING REINFORCEMENT LEARNING

    SONG MYUNGHO / LEE JOONGHEE / KIM JUYOUNG et al. | Europäisches Patentamt | 2022

    Freier Zugriff