Power systems, known as the hearth of satellites, have a direct impact on how long the satellite will operate. An on-orbit mission might fail due to several problems with the satellite power system. Thus, during the entire lifespan of the satellite, the diagnostics of power system faults is crucial. In this study, a new machine learning-based fault diagnosis approach has been proposed for geosynchronous (GEO) satellite power systems. In the feature extraction step of the approach, principal component analysis (PCA) technique is used. Then, LogitBoost with random forest classifier is utilized for the aim of classification. The experimental results show that the proposed model is effective and can be used for fault diagnosis of GEO satellite power systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning-Based Fault Diagnosis Approach for Geosynchronous Satellite Power Systems


    Beteiligte:
    Eyupoglu, Can (Autor:in)


    Erscheinungsdatum :

    07.06.2023


    Format / Umfang :

    634570 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Geosynchronous Satellite Maneuver Classification via Supervised Machine Learning

    Roberts, Thomas G. | British Library Conference Proceedings | 2021


    Geosynchronous meteorological satellite

    SUOMI, V. / VONDE, T. | AIAA | 1968


    Geosynchronous meteorological satellite.

    SUOMI, V. E. / VONDER HAAR / T. H. | AIAA | 1969


    Geosynchronous meteorological satellite

    Suomi, V. E. / Vonder Haar, T. H. | NTRS | 1970