The choice of low-carbon travel modes by residents directly affects the low-carbon development of transportation. Whereas, the current study of behavior prediction models lacks the accuracy and interpretability. We propose the theoretical framework of residents' low-carbon travel choice behavior at the microlevel and construct the Stacking ensemble learning prediction model on basis of residents' low carbon travel data. Through integrating various data such as transportation facility data and real-time weather observation data, we utilize machine learning algorithms to improve the prediction accuracy of residents' low-carbon travel choice, and explore the impact of different influencing factors on their choice behaviors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predictions of Low-carbon Travel Mode Choices for Residents Based on Stacking Ensemble Learning Prediction Model


    Beteiligte:
    Dong, Xiaoyang (Autor:in) / Li, He (Autor:in) / Dong, Gaofeng (Autor:in)


    Erscheinungsdatum :

    07.08.2024


    Format / Umfang :

    432850 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Travel mode choices of residents in developing cities: A case study of Lusaka, Zambia

    Moses Mwale / Noleen Pisa / Rose Luke | DOAJ | 2024

    Freier Zugriff


    Discrete Continuous Travel Mode Choices based on Simulated Travel Demand: a MDCEV Model Application

    Wörle, Tim / Görgülü, Mehmet Emre / Szimba, Eckhard et al. | Elsevier | 2025

    Freier Zugriff

    Mobility, Poverty, and Gender: Travel ‘Choices’ of Slum Residents in Nairobi, Kenya

    Salon, Deborah / Gulyani, Sumila | Taylor & Francis Verlag | 2010