Models for predicting aircraft motion are an important component of modern aeronautical systems. These models help aircraft plan collision avoidance maneuvers and help conduct off-line performance and safety analyses. In this paper, we develop a method for learning a probabilistic generative model of aircraft motion in terminal airspace, the controlled airspace surrounding a given airport. The method fits the model based on a historical dataset of radar-based position measurements of aircraft landings and takeoffs at that airport. We find that the model generates realistic trajectories, provides accurate predictions, and captures the statistical properties of the aircraft trajectories. Furthermore, the model trains quickly, is compact, and allows for efficient real-time inference.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace From Position Data


    Beteiligte:


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    3390653 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch