Precisely localizing a vehicle in the GNSS-denied urban area is crucial for autonomous driving. The occupancy grid-based 2D LiDAR SLAM methods scale poorly to outdoor road scenarios, while the 3D point cloud-based LiDAR SLAM methods suffer from huge computation and storage costs. Aiming at the precise real-time LiDAR SLAM for both indoor and outdoor, this paper proposed a direct 2.5D heightmap-based SLAM system. This system extended our previously proposed DLO (the direct 2.5D LiDAR odometry) method by introducing the 2.5D segment features for efficient loop closure detection. We experimented our SLAM method on the KITTI datasets and shown it superior performance compared with the existing LiDAR SLAM methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DL-SLAM: Direct 2.5D LiDAR SLAM for Autonomous Driving


    Beteiligte:
    Li, Jun (Autor:in) / Zhao, Junqiao (Autor:in) / Kang, Yuchen (Autor:in) / He, Xudong (Autor:in) / Ye, Chen (Autor:in) / Sun, Lu (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    4188603 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DL-SLAM: DIRECT 2.5D LIDAR SLAM FOR AUTONOMOUS DRIVING

    Li, Jun / Zhao, Junqiao / Kang, Yuchen et al. | British Library Conference Proceedings | 2019


    SLAM in Autonomous Driving

    Ren, Jianfeng / Xia, Dong | Springer Verlag | 2023


    Lidar-based SLAM and autonomous navigation for forestry quadrotors

    Hu, Xuejun / Wang, Meishan / Qian, Chenghao et al. | IEEE | 2018


    AGPC-SLAM: Absolute Ground Plane Constrained 3D Lidar SLAM

    Weisong Wen / Li-Ta Hsu | DOAJ | 2022

    Freier Zugriff

    D3VIL-SLAM: 3D Visual Inertial LiDAR SLAM for Outdoor Environments

    Frosi, Matteo / Matteucci, Matteo | IEEE | 2023