Vehicle-to-everything (V2X) communication is an essential technology for future vehicular applications. It is challenging to simultaneously achieve vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications, given the shared spectrum. Deep reinforcement learning (DRL)-based algorithms have been proposed for resource allocation in V2I and V2V designs. Existing DRL designs focus on the objectives of high-capacity V2I and high-reliability V2V links. In this study, a multi-agent DRL algorithm is proposed to maximize the sum capacity of V2I links while ensuring capacity fairness among the V2V links. The simulation results demonstrate the balance between the V2I–V2V objectives achieved by the proposed algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Reinforcement Learning-Based Resource Allocation for Cellular V2X Communications


    Beteiligte:
    Chung, Yi-Ching (Autor:in) / Chang, Hsin-Yuan (Autor:in) / Chang, Ronald Y. (Autor:in) / Chung, Wei-Ho (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    2070743 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Meta-Reinforcement Learning Based Resource Allocation for Dynamic V2X Communications

    Yuan, Y / Zheng, G / Wong, KK et al. | BASE | 2021

    Freier Zugriff


    Deep Reinforcement Learning based Dynamic Resource Allocation Method for NOMA in AeroMACS

    Yu, Lanchenhui / Zhao, Jingjing / Zhu, Yanbo et al. | IEEE | 2024


    Deep Reinforcement Learning Based Computing Resource Allocation in Fog Radio Access Networks

    Tong, Zhaowei / Li, Zhuoran / Gendia, Ahmad et al. | IEEE | 2024