Spatiotemporal variations in the ionosphere affects the HF and satellite communications and navigation systems. Total Electron Content (TEC) is an important parameter since it can be used to analyze the spatial and temporal variability of the ionosphere. In this study, the performance of the two widely used Kriging algorithms, namely Ordinary Kriging (OrK) and Universal Kriging (UnK), is compared over the synthetic data set. In order to represent various ionospheric states, such as quiet and disturbed days, spatially correlated residual synthetic TEC data with different variances is generated and added to trend functions. Synthetic data sampled with various type of sampling patterns and for a wide range of sampling point numbers. It is observed that for small sampling numbers and with higher variability, OrK gives smaller errors. As the sample number increases, UnK errors decrease faster. For smaller variances in the synthetic surfaces, UnK gives better results. For increasing variance and decreasing range values, usually, the errors increase for both OrK and UnK.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Synthetic TEC Mapping with Ordinary and Universal Kriging


    Beteiligte:
    Sayin, I. (Autor:in) / Arikan, F. (Autor:in) / Arikan, O. (Autor:in)


    Erscheinungsdatum :

    01.06.2007


    Format / Umfang :

    471125 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ordinary Kriging Surrogates in Aerodynamics

    Dumont, Antoine / Hantrais-Gervois, Jean-Luc / Passaggia, Pierre-Yves et al. | Springer Verlag | 2018


    Universal Kriging for Loran ASF Map Generation

    Son, Pyo-Woong / Rhee, Joon Hyo / Hwang, Jaehui et al. | IEEE | 2019


    GRADIENT-ENHANCED UNIVERSAL KRIGING WITH POLYNOMIAL CHAOS AS TREND FUNCTION

    Zuhal, Lavi R. / Zakaria, Kemas / Palar, Pramudita S. et al. | TIBKAT | 2020



    Gradient-Enhanced Universal Kriging with Polynomial Chaos as Trend Function

    Zuhal, Lavi R. / Zakaria, Kemas / Palar, Pramudita S. et al. | AIAA | 2020