Digital map data is an important source of information for the perception of the environment around cars for advanced driver assistance functions. These functions use map data to acquire information about the road infrastructure beyond the visual horizon of the driver. Embedded software components in today's cars typically use code-based processing of the map data to offer this support to advanced driver assistance functions, but the complexity of automotive systems continues to grow towards the realization of autonomous driving. To facilitate the representation and extraction of knowledge, we explore the feasibility of using ontologies for modelling and processing the map data in cars. We describe the challenges of adequately modelling the knowledge and present a proof of concept implementation that is used in a PC-based simulation to evaluate the knowledge extraction capabilities of this approach considering the requirements of representative advanced driver assistance functions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Ontological Model for Map Data in Automotive Systems


    Beteiligte:
    Suryawanshi, Yogita (Autor:in) / Qiu, Haonan (Autor:in) / Ayara, Adel (Autor:in) / Glimm, Birte (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    185072 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    An Ontological Architecture for Orbital Debris Data

    Rovetto, Robert J. | ArXiv | 2017

    Freier Zugriff

    An ontological infrastructure for traveller information systems

    Samper, J.J. / Tomas, V.R. / Martinez, J.J. et al. | IEEE | 2006