To ensure the reliable and stable operation of expressway energy system under the condition of power failure, this paper proposes a method for predicting the remaining useful life of expressway power supply guarantee equipment based on time mode attention mechanism (TPA). Firstly, by analyzing the working scene of lithium battery uninterruptible power supply (UPS) and the difficulty of obtaining its monitoring data, a four-dimensional state space affecting UPS health indicators is established. Secondly, a network model combining TPA and BiLSTM is constructed, and the training parameters are determined by random search and artificial parameter optimization. Finally, the model is tested using the data of NASA lithium battery dataset. The results show that the mean absolute error (MAE) and root mean square error (RMSE) of the prediction method proposed in this paper are 55% and 47% lower than those of support vector machine regression (SVR), and 59% and 45.7% lower than those of convolutional neural network (CNN), respectively. The results obtained by the prediction model proposed in this paper are more accurate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction Method of Remaining Useful Life of Expressway Power Supply Guarantee Equipment


    Beteiligte:
    Xu, Hongke (Autor:in) / Liu, Wandong (Autor:in) / Lin, Shan (Autor:in) / Chen, Tianyi (Autor:in)


    Erscheinungsdatum :

    04.08.2023


    Format / Umfang :

    1251941 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Prediction of Mining Railcar Remaining Useful Life

    Rahimdel, Mohammad Javad / Ghodrati, Behzad / Vahed, Amir Taghizadeh | Springer Verlag | 2019



    Prediction of Remaining Useful Life for Aero-Engines

    B, Rounak / J, Manikandan | IEEE | 2021


    Deep Learning Prediction for Bearing Remaining Useful Life

    Liu, Hui / Cheng, Fang / Li, Yanfei | Springer Verlag | 2025


    MOTOR FAULT DETECTION AND REMAINING USEFUL LIFE PREDICTION

    BARONIJAN ARMEN / LASKOVY ANDREW MICHAEL / SOMAYAJULA DEEPAK BALAJI et al. | Europäisches Patentamt | 2025

    Freier Zugriff