This paper designs a novel trajectory planning approach to resolve the computational efficiency and safety problems in uncoordinated methods by exploiting vehicle-to-everything (V2X) technology. The trajectory planning for connected and autonomous vehicles (CAVs) is formulated as a game with coupled safety constraints. We then define interaction-fair trajectories and prove that they correspond to the variational equilibrium (VE) of this game. We propose a semi-decentralized planner for the vehicles to seek VE-based fair trajectories, which can significantly improve computational efficiency through parallel computing among CAVs and enhance the safety of planned trajectories by ensuring equilibrium concordance among CAVs. Finally, experimental results show the advantages of the approach, including fast computation speed, high scalability, equilibrium concordance, and safety.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Semi-Decentralized and Variational-Equilibrium-Based Trajectory Planner for Connected and Autonomous Vehicles


    Beteiligte:
    Liu, Zhengqin (Autor:in) / Lei, Jinlong (Autor:in) / Yi, Peng (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    848979 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles

    Samiuddin, Jilan / Boulet, Benoit / Wu, Di | ArXiv | 2024

    Freier Zugriff

    Homotopic-based planner for autonomous vehicles

    JURAJ KABZAN / EMILIO FRAZZOLI | Europäisches Patentamt | 2024

    Freier Zugriff

    Homotopic-based planner for autonomous vehicles

    JURAJ KABZAN / EMILIO FRAZZOLI | Europäisches Patentamt | 2024

    Freier Zugriff

    Homotopic-based planner for autonomous vehicles

    Europäisches Patentamt | 2023

    Freier Zugriff