The results of a comprehensive array of unsuper-vised anomaly detection algorithms applied to Space Shuttle Main Engine (SSME) data are presented. Most of the algorithms are based upon variants of the well-known unconditional Gaussian mixture model (GMM). One goal of the paper is to demonstrate the maximum utility of these algorithms by the exhaustive development of a very simple GMM. Selected variants will provide us with the added benefit of diagnostic capability. Another algorithm that shares a common technique for detection with the GMM is presented, but instead uses a different modeling paradigm. The model provides a more rich description of the dynamics of the data, however the data requirements are quite modest. We will show that this very simple and straightforward method finds an event that characterizes a departure from nominal operation. We show that further diagnostic investigation with the GMM-based method can be used as a means to gain insight into operational idiosyncrasies for this nominally categorized test. Therefore, by using both modeling paradigms we can corroborate planned operational commands or provide warnings for unexpected operational commands.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised Anomaly Detection and Diagnosis for Liquid Rocket Engine Propulsion


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.2007


    Format / Umfang :

    17707735 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring

    Schwabacher, Mark / Oza, Nikunj / Matthews, Bryan | AIAA | 2007


    Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring

    Schwabacher, Mark / Oza, Nikunj / Matthews, Bryan | AIAA | 2009


    Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring AIAA Paper

    Schwabacher, M. / Oza, N. / Matthews, B. | British Library Conference Proceedings | 2007


    Black Engine Ceramic Rocket Propulsion

    Ortelt, Markus / Seiler, Helge / Böhle, Martin et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2019

    Freier Zugriff

    Nuclear thermal propulsion rocket engine

    HARDY RICHARD / HARDY JONATHAN | Europäisches Patentamt | 2016

    Freier Zugriff