The simultaneous localization and mapping (SLAM) problem is concerned with using sensor data to build an environmental map, while also localizing an autonomous agent within this map. Two approaches are currently prevalent (Bayesian filtering and graph-based optimization), however these both involve approximations and have the potential to be improved. In this paper, we propose novel high-performance SLAM algorithms derived from variational Bayes inference. By using mean-field type approximations, the resulting computational complexity is linear. We also add an empirical Bayes assumption to improve the flexibility of the inference. Experiments are conducted on both synthetic data and real RGB-D images. The proposed approach achieves 42% average error reduction in all scenarios on synthetic data, and 26% average error reduction on real images (with respect to two other baseline algorithms).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Linear-complexity stochastic variational Bayes inference for SLAM


    Beteiligte:
    Jiang, Xiaoyue (Autor:in) / Hoy, Michael (Autor:in) / Yu, Hang (Autor:in) / Dauwels, Justin (Autor:in)


    Erscheinungsdatum :

    01.10.2017


    Format / Umfang :

    575838 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Normalized Gaussian Network Based on Variational Bayes Inference and Hierarchical Model Selection

    Yoshimoto, J. / Ishii, S. / Sato, M.-a. | British Library Online Contents | 2003


    Variational-Bayes Optical Flow

    Chantas, G. | British Library Online Contents | 2014


    Trajectory Prediction Algorithm Based on Variational Bayes

    Ma, Xiaolong / Liu, Gang / He, Bing et al. | IEEE | 2018


    Variational Inference for Visual Tracking

    Vermaak, J. / Lawrence, N. / Perez, P. et al. | British Library Conference Proceedings | 2003