This paper introduces a novel approach, mobility-induced graph learning (MINGLE), to enhance the accuracy of Wi-Fi positioning. Traditional Wi-Fi positioning methods often struggle with accuracy due to obstructions and interference. MINGLE addresses these challenges by converting user movement patterns into graphs, which are then analyzed using graph neural network. This method involves creating two types of graphs, based on the time and direction of user mobility, and employs a novel cross-graph learning technique in conjunction with self-supervised learning. This approach has demonstrated significant improvements in positioning accuracy, achieving a remarkable accuracy of 1.301 (m) in an underground parking lot setting, without relying on labeled data samples.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    WiFi Positioning with Mobility-Induced Graphs


    Beteiligte:
    Han, Kyuwon (Autor:in) / Yu, Seung Min (Autor:in) / Kim, Seong-Lyun (Autor:in) / Ko, Seung-Woo (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    2451386 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    WIFI-based high-precision positioning agricultural robot

    LI ZHONGYI / ZHENG ZINAN / CHEN YULING et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Micro-map reverse vehicle finding method based on WiFi positioning

    XIONG YUNYU / ZHANG QIANCHU / ZHOU PENG | Europäisches Patentamt | 2015

    Freier Zugriff

    Removing useless APs and fingerprints from WiFi indoor positioning radio maps

    Eisa, Samih / Peixoto, João / Meneses, Filipe et al. | BASE | 2013

    Freier Zugriff

    Removing useless APs and fingerprints from WiFi indoor positioning radio maps

    Eisa, Samih / Peixoto, Joao / Meneses, Filipe et al. | IEEE | 2013


    WiFi signal fingerprint positioning navigation method and system of intelligent vehicle

    MO XIAOHUA / HUANG XUANHAN / HU CAIFENG et al. | Europäisches Patentamt | 2024

    Freier Zugriff