Traffic systems can be greatly affected by factors such as accidents and weather. In particular, bad weather can have a big impact on travel time and traffic In this paper, we try to predict the traffic volume according to weather variables using the ARIMA model and the LSTM model. For traffic volume and weather data, data from the "Siheung TG of Seoul Outer Ring Expressway" was used, and performance evaluation was performed using RMSE and MAPE.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of the Predictive Power of Highway Traffic Flow with Weather Conditions


    Beteiligte:
    Kang, Minji (Autor:in) / Park, Hyeonju (Autor:in) / Han, Chungku (Autor:in) / Gim, Gwangyong (Autor:in)


    Erscheinungsdatum :

    04.08.2022


    Format / Umfang :

    505753 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Highway traffic flow prediction method based on weather conditions

    WENG JINSONG / DONG SHENGPING | Europäisches Patentamt | 2023

    Freier Zugriff

    Warning Grading Method for Highway Network Traffic Conditions under Foggy Weather

    Tang, Junjun / Li, Changcheng / Zhao, Nale | ASCE | 2011


    Effects of Road and Weather Conditions on Traffic Flow on a Three-Lane Rural Highway in Finland

    Enberg, A. / Mannan, S. / Permanent International Association of Road Congress | British Library Conference Proceedings | 1998



    Characterization of highway traffic flow under the influence of non-predictive events

    Liu, Jia / Song, Xiang-hui / Yang, Xiao-lei | SPIE | 2024