The problem of clutter region identification based on Markov random field (MRF) models is addressed. Observations inside each clutter region are assumed homogenous, i.e., observations follow a single probability distribution. Our goal is to partition clutter scenes into homogenous regions and to determine this underlying probability distribution. Metropolis-Hasting and reversible jump Markov chain (RJMC) algorithms are used to search for solutions based on the maximum a posteriori (MAP) criterion. Several examples illustrate the performance of our algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Statistical characterization of clutter scenes based on a Markov random field model


    Beteiligte:
    Kasetkasem, T. (Autor:in) / Varshney, P.K. (Autor:in)


    Erscheinungsdatum :

    01.07.2003


    Format / Umfang :

    4317180 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Markov Random Field model for single image defogging

    Caraffa, Laurent / Tarel, Jean-Philippe | IEEE | 2013



    MARKOV RANDOM FIELD MODEL FOR SINGLE IMAGE DEFOGGING

    Caraffa, L. / Tarel, J. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2013