Semi-autonomous driving assistance systems have a high potential to improve the safety and efficiency of the battery electric vehicles that are enduring limited cruising range. This paper presents an ecologically advanced driver assistance system to extend the functionality of the adaptive cruise control system. A real-time stochastic non-linear model predictive controller with probabilistic constraints is presented to compute on-line the safe and energy-efficient cruising velocity profile. The individual chance-constraint is reformulated into a convex second-order cone constraint which is robust for a general class of probability distributions. Finally, the performance of proposed approach in terms of states regulation, constraints fulfilment, and energy efficiency is evaluated on a battery electric vehicle.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fast stochastic non-linear model predictive control for electric vehicle advanced driver assistance systems


    Beteiligte:


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    1738284 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver assistance systems modeling by model predictive control

    Wang, M. / Daamen, W. / Hoogendoorn, S.P. et al. | IEEE | 2012


    Virtual Stochastic Testing of Advanced Driver Assistance Systems

    Prialé Olivares, Stephanie / Rebernik, Nikolaus / Eichberger, Arno et al. | Springer Verlag | 2015



    Advanced Driver Assistance Systems

    Hilgers, Michael / Achenbach, Wilfried | Springer Verlag | 2021


    Advanced Driver Assistance Systems

    Haas, Roland Erik / Bhattacharjee, Shambo / Möller, Dietmar P. F. | Springer Verlag | 2019