An important objective of an autonomous vehicle is to navigate through an unknown environment. A method used to achieve this objective is to generate a map. A map provides the means for the vehicle to create paths between the visited places autonomously in order to perform a task. A particular problem is to obtain such a map when there is no initial knowledge of the surroundings or not even the initial position of the robot in the environment. On other hand, avoiding static and dynamic obstacles is required, so a novel artificial potential field method is presented. The new designs that solve both problems are implemented on an FPGA. The novel designs are then tested on differential traction mobile robots with a computer vision system that travel on a controlled unknown environment. The experimental results show good performance in real time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual SLAM and Obstacle Avoidance in Real Time for Mobile Robots Navigation


    Beteiligte:


    Erscheinungsdatum :

    01.11.2014


    Format / Umfang :

    609961 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vision based obstacle avoidance and navigation system for mobile robots

    Srinivasa, Santhosh | BASE | 2020

    Freier Zugriff

    Mobile Robots with Dynamic Obstacle Avoidance

    Ali, Maram / Das, Saptarshi | IEEE | 2023


    Autonomous Visual Navigation and Laser-Based Moving Obstacle Avoidance

    Cherubini, Andrea / Spindler, Fabien / Chaumette, Francois | IEEE | 2014


    Obstacle avoidance based-visual navigation for micro aerial vehicles

    Aguilar Castillo, Wilbert Geovanny / Casaliglla, Veronica P. / Polit, Jose L. | BASE | 2017

    Freier Zugriff

    Binocular vision obstacle avoidance wheeled robot based on SLAM

    XU HUANGSHENG / LIU YU / JIANG BINGZHENG et al. | Europäisches Patentamt | 2023

    Freier Zugriff